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Abstract—This study is concerned with the dynamic response of a long cylindrical elastic bar
which is partially embedded in a homogeneous elastic half-space and is subjected to a harmonic
lateral load, or to a moment. Appropriate asymmetric Green’s functions are derived through
Hankel integral transforms and are presented explicitly. An efficient solution scheme based on
Lagrange’s equation of motion combined with a discretization technique is applied to solve the
title problem. Numerical results are presented to illustrate the influence of bar flexibility, mass
density, geometry, and frequency of excitation on the horizontal, moment (rocking), and coupled
impedances of the bar—elastic half-space system.

INTRODUCTION

The study of finite cylindrical elastic bars which are partially embedded in an elastic half-
space and subjected to a harmonic lateral load or to a moment as shown in Fig. 1 has
useful application in several branches of engineering. The force~displacement relationship
(impedance) of such a system in particular has direct application in the analysis of pile
foundations under dynamic loading. A review of existing literature reveals that an exact
analytical formulation is not available even for the case of a laterally loaded rigid bar
under static loading. Among the existing solutions, the most rigorous treatment on the
static problem is due to Apirathvorakij and Karasudhi[1]. They extended the solution
scheme developed by Muki and Sternberg[2] for elastostatic axial load transfer to study
the quasi-static bending of a long cylindrical elastic bar partially embedded in a saturated
porous elastic half-space. A recent study by Karasudhi et al.[3] investigated the effect of
a modified compatibility condition.

A less rigorous approach was presented by Spillers and Stoll[4] to study the behaviour
of laterally loaded elastic piles under static loading. In Ref. [4], the pile was modelled as
a line inclusion which obeys the Bernoulli-Euler beam theory and the interactive reaction
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Fig. 1. Geometry of bar and embedding medium.
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between the beam and the half-space was modelled by a horizontal point load acting in
the interior of a half-space[5]. The study of Ref. [4] provided the basis for the currently
utilized discretization technique. Improvements to the work of Ref. [4] have been reported
by Poulos{6], Butterfield and Bannerjee[7], and Selvadurai and Rajapakse{8].

Studies on the dynamic problem are rather limited. Nogami and Novak[9,10]
presented a solution for an elastic pile embedded in a soil layer of equal height resting on
a rigid base. This analysis was based on a two-dimensional representation where both the
displacement and the equilibrium equations of the soil layer in a vertical direction was
neglected to obtain a simpler solution. In a recent study, Nielsen[11] investigated the
resistance of an elastic layer to a given horizontal displacement profile, and found that the
use of true three-dimensional conditions for the soil layer yields results which are greatly
different from those in Ref. [9]. The most rigorous treatment on the problem of a
dynamically loaded rigid cylinder embedded in an elastic half-space is due to Apsel[12],
who presented a solution based on the boundary integral equation technique. Recently,
Sen et al[13] made an attempt to solve the problem of a finite elastic bar embedded in
an elastic half-space and subjected to a lateral dynamic load, by extending the scheme of
Ref. [4].

In a previous paper[14], the authors discussed in detail the deficiencies associated
with the application of the solution scheme employed in Ref. {13] to solve the elastodynamic
problem. Thus, an accurate solution accounting for the three-dimensional behaviour of
the surrounding medium is currently not available for the titie problem. In this study, the
authors have extended their solution scheme developed for the longitudinal vibration{14]
to determine the impedance of the system shown in Fig. 1.

Initially Green’s functions corresponding to appropriate asymmetric ring loads acting
in the interior of the half-space are derived by employing Hankel integral transforms, and
are presented explicitly. These Green’s functions are used to develop the influence functions
required in the proposed solution scheme. The solution scheme presented in this study is
based on the assumption that the length to radius ratio of the bar is large, and the
frequency of excitation is small, such that the use of the Bernoulli-Euler beam theory for
the bar is justifiable. In view of these assumptions, the lateral displacement of the bar is
approximated by an admissible function of the z-coordinate containing a set of generalized
coordinates. These generalized coordinates are determined through the application of
Lagrange’s equation of motion to the bar-half-space system.

Numerical results are presented to verify the accuracy and convergence of the present
solution scheme. The influence of bar geometry (length/radius ratio), bar flexibility ratio,
mass density and frequency of excitation on the lateral, rocking, and coupled impedances
of the bar—half-space system shown in Fig. 1 is illustrated by means of a parametric study.

FUNDAMENTAL SOLUTIONS

Consider a half-space region as shown in Fig. 2, in which (r,6,2) is the cylindrical
polar coordinate system, and the related rectangular Cartesian coordinate system (x, y, z)
is such that the z-axis is normal to the free surface. For an isotropic linear elastic medium,
the displacements u, v, and w in the r-, 8-, and z-directions, respectively, can be expressed
in terms of thrze scalar potential functions as
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Fig. 2. System considered in deriving the fundamental solution.

In view of the representation given by eqns (1a)—(1c), together with consideration of
harmonic vibrations of circular frequency w characterized by the term e'™ (suppressed in
the sequel) where i = ,/— 1, the displacement equations of equilibrium in the absence of
body forces are satisfied if the potentials ¢, ¢ and A are the solutions to the following
scalar wave equations:

(V*+k3p=0 (2a)
V2+k}y=0 (2b)
(V2+kHA =0 (2¢)

where k2 = w?p/(A + 2p) and k = w?p/u are the pressure and shear wave numbers,
respectively; 4 and u are Lame’s constants; p the density of the medium, and V? is the
Laplacian operator. The representations of eqns (1a)—(1c) can be expanded by Fourier
expansions with respect to the §-coordinate. In doing so, the potentials of ¢, ¥ and A can
be expressed as

< 6
9,09 = 3 ¢ulr2) {;’f:;”s} (%)
40,09 = § a2 {::;s":g } (3b)
ol ~ 0
Aw6,2) = 3 A z){_i‘o';’,’; 9}. (39

Substitution of the representation given by eqns (3a)—(3c) in eqns (2a)—(2¢c) together
with the use of Hankel integral transforms[15] leads to the following solution for Fourier
components ¢, ¥, and A,

f*e0
Onlr2)= | &Ame™™ + Bne¥)Mo(lr)dd (4a)
Yo
Yulr2)= | Cue™® + Duef W (§r)ds (4b)
vo
Aur.2) = | §Ene™™ + F, ), (¢r)d¢ (4¢)
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In eqns (4a)-(4c), ¢ is the Hankel transform parameter, J,, is the Bessel function of
the first kind of order m, and A,(¢), Bn(&), Co(&), Du(&), E, (&), and F,(¢) are arbitrary
functions to be determined by invoking appropriate boundary and continuity conditions.
In view of eqns (1), (3), and (4), the displacements u(r,6,z), v(r,6,z), and w(r,6,z) can be
expanded in terms of Fourier components u,(r, z), v,(r, z), and w,(r, z), respectively. These
Fourier components are found to be

Wlr,2) = J [~ Ape™* + B,e”) + £(Cpe ™ + D, e#))8J,(¢r) d¢ (6a)

0

£ U = f [F(Ane™™ + Bpe®) T f(—Cpe ™" + D, )
0
 (Ene ™ 4+ Fref))e2,,4(E)dE. (6b)

The relevant stress components a..(r, 0, z), 0.,(r, 6, z), and a.4(r, 6, z) in the present class
of problems can be expanded in an identical manner in terms of Fourier components
07:(r, z), 63(r,z) and o7y(r,z), respectively. With appropriate manipulations, o7, o™ and
o3 can be expressed as

ox(rz) = #J [((2¢* — kXAme™* + B,e%)
0

+ 2BEH(— Cpe ™ + D, e7)]18J,(¢r) dC (7a)
o% + 0%y = J [F 2a(— Ane™* + B,e*)
F (28 — k2Cpe P + Dpe?) + B(—E,e ™% + F,ef)1E%, ., dé. (Tb)

The displacements and stresses given by eqns (6) and (7) could be used to represent
the general solution to problems having axisymmetric geometry subjected to arbitrary
loading. Note that the system shown in Fig. 1 possesses symmetry about the x-axis (6 = 0),
and the relevant displacements and stresses are obtained from eqns (6) and (7) by considering
only a single symmetric term in the Fourier expansion with m = 1.

At this stage, it is convenient to nondimensionalize the problem under consideration
by defining a length parameter “a”, which denotes the radius of the embedded cylindrical
bar; a is taken as a unit of lcngth Consider the problem of a homogeneous half-space
subjected to concentrated circular ring loads in the x- and z-directions as shown in Figs
3(a) and (b). Solutions corresponding to these loading configurations can be obtained by
considering two domain problems as suggested in Ref. [8] for the corresponding static
problem. The boundary and continuity conditions remain identical to the static problem
as given in Ref. [8]. The solution of the associated boundary value problems results in the
expressions for displacement corresponding to each loading case, and these expressions
are given by eqns (A1)-(A6) in the appendix.
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Fig. 3. Concentrated ring loads acting in the interior of the half-space.
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Fig. 4. Geometry of the toroidal and annular clements.

In the subsequent section dealing with the system shown in Fig. 1, solutions
corresponding to tractions and body forces in the x- and z-directions, acting over annular
and toroidal elements, shown in Fig. 4, are required. These solutions could be developed
by integrating the solutions given by eqns (A1)-(A6) in the radial direction for the case of
an annular element, and integration in both the r- and z-directions for a toroidal element.
In performing integration in a radial direction, it is assumed that the asymmetric normal
tractions acting on an annular element, and the asymmetric normal body force acting on
a toroidal element, have linearly varying distributions in a radial direction. This enables
convenient explicit integration in the radial direction. The expressions for displacement in
the k-direction (k = r, 8, z) at point P{r;, z;} due to tractions or body forces in the /-direction
(I = x, z) acting on element j with coordinates (r,, z)) are denoted by f*'(r;, 6, z;; r;, z)). Explicit
representation of /¥ for annular and toroidal elements are given by eqns (A18)-(A30) in
the appendix.

ELASTIC CYLINDRICAL BAR EMBEDDED IN A HALF-SPACE

Figure 1 shows a cylindrical elastic bar of radius a and length h (h/a > 1) partially
embedded in a surrounding elastic half-space. A cylindrical coordinate system (r,8,2) is
defined such that the z-axis coincides with the longitudinal centroidal axis of the cylinder
and is normal to the stress-free surface of the half-space. The material properties of the
bar, which is assumed to behave as a Bernoulli-Euler beam, are characterized by its
Young’s modulus E,, and mass density p,. The surrounding half-space is characterized by

SAS 23:2~F
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Fig. 5. Extended half-space subjected to body forces and end tractions.

its Young's modulus, Poisson’s ratio and mass density denoted by E, v, and p, respectively.
It is assumed that the bar is continuously bonded to the surrounding half-space along the
shaft of the bar (r = a, 0 < 6 < 27, 0 < z < h) and along the base of the bar. The bar-half-
space system is subjected either to a harmonic horizontal load H,ei® acting in the x-
direction or to a harmonic moment M, ¢! about the y-axis. These loadings are assumed
to act at the top end of the bar at z = (. Under these geometric and loading configurations,
the system possesses symmetry about the x-axis (8 = 0).

The method of analysis employed in this study is based on that proposed by Rajapakse
and Shah[14] to solve the problem of longitudinal harmonic motion of a long cylindrical
bar embedded in an elastic half-space. Initially, we consider the case of a short rigid
cylindrical bar and apply the discretization procedure developed in Ref. [14]. Our objective
at this stage is to verify the accuracy of the discretization procedure by comparing the
solutions with those obtained by Apsel[12] for a short rigid cylinder under the action of
a lateral load or a moment.

For this purpose, we consider the extended half-space-fictitious bar model originally
proposed by Muki and Sternberg[2]. When the bar is rigid, it is unnecessary to consider
a fictitious bar and consequently the assumption of the Bernoulli-Euler beam theory is
no longer required. Consideration is given only to the extended half-space as shown in
Fig. 5. It is assumed that volume V* in the extended half-space (identical to that of the
bar} is subjected to unknown body force distributions in the x- and z-directions {with
variation in the f-direction as shown in Figs 3(a) and (b)). In addition, the terminal cross-
sections at z = 0 and h are subjected to unknown traction distributions in the x- and z-
directions, simulating direct load transfers to the surrounding half-space. When the bar is
long, it is reasonable to assume that the effect of body forces in the z-direction and
concentrated load transfers in the z-direction at the terminal cross-sections can be neglected.

For the static problem involving a long cylindrical bar, the body force in the x-
direction in V* and traction in the x-direction at the terminal cross-sections could be
assumed to have a uniform distribution. Under these assumptions, the model of Api-
rathvorakij and Karasudhi[1] is obtained. For elastodynamic probiems, it was found in
Ref. [14] that solutions based on a uniform body force and traction model are accurate
only in the very low frequency range. In this study, as in Ref. [14], it is assumed that body
forces and tractions are distributed nonuniformly within a cross-section of V*. However,
it should be mentioned here that the displacements in V* due to a non-uniform body force
and traction field generated by fundamental loadings shown in Fig. 2 wouid not correspond
exactly to a rigid body mode of V*, due to azimuthal dependence of the problem. In view
of this displacement compatibility is proposed to impose along the x-axis (6 = 0).

Thereafter, the volume V* is discretized by toroidal elements, and the terminal cross-
sections are discretized by annular elements shown in Fig. 4. A flexibility equation relating
to the magnitude of the body forces acting on toroidal elements, and traction acting on
annular elements could be established through the influence functions f*(r;, 8, z; r}, z))
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and f*(r,,8,z; r;,z)) given in the appendix, to ensure that the x-z plane in domain V*

moves as the rigid body. The appropriate rigid body displacements for a point in the x-
z plane (8 = 0) are

u=A4,+(h—2)¢, (8a)

w=rd, (8b)

where A, is the displacement in the x-direction at z = h and ¢, is the rotation about the
y-axis. The appropriate flexibility equation can be written as

My
Y [f™(ri, 0,257, 2)B,; + [™(r;, 0,257, 2))B, ]
=1

M
+ Z []'x(’hO,Zs; T Zj)ij + f’z("n 0,z; T Zj)sz]

i=1

—-A,.—(h—z‘)¢0=0 (i=1,...,M1+M1) (93)

M,
Z L, 0,z; rjszj)B.xj + f¥(r;,0,2; ";J})sz]

<
M,
+ Z {fu(ri: 0,z; rj,zj)?'l; + fu(ri’oazi; "j’zj)sz]
i=1
—r,-¢0=0 (i=1,...,M1+M2) (9b)

M, M, 2
z anjAszerxj e Z 27trj7;jArj + na hwz(p - prAh + h¢0/2) = Ho (90)
i=1 i=1

M
Zl {27"'}‘(’1 - ZJ)AZjAerxj + “;E[(r} + Arj/2)‘ - (rj - Ar)/2)4]Asz=}}
i=1

+ ‘f {an,(h - z2)ArT,; + %[(rj + Ar/2)* —(r; - Ar,-/Z)‘]T;;}
Jj=1
na*hw*(p — pp)[W*o/3 + Ah/2] + tha*w?(p — puido/d = Mo.  (9d)

In eqns (9a)-(9d), B,; and B,; denote the intensity of body forces in the x- and z-
directions acting on the jth toroidal element; T,; and T;; denote the intensity of tractions
in the x- and z-directions acting on the jth annular element modelling terminal cross-
sections; M, and M, are the total number of toroidal and annular elements employed to
model the volume ¥* and terminal cross-sections, respectively. The solution of eqns (9a)-
(9d) with either Hy =1 and My =0 or Hy =0 and M, =1 would yield the numerical
values of B, B,;(j=1,...,.M,), T,;, T; (j = 1,...,M;), A, and ¢,. Thereafter, horizontal
impedance ky (Ho/uad,), rotational impedance ky(Mo/ua*¢,), and coupled impedance
Ken oF kyy (Ho/ua’d or Mo/ua*A,) could be determined.

Figure 6 shows the comparison of real (Re) and imaginary (Im) parts of rotational
impedance of a massless rigid cylinder (h/a = 2.0) obtained from the present study with
those obtained by Apsel[12]. In Fig. 6, the non-dimensional frequency a, is defined as
ap = ak,. The results obtained from the present scheme for k, agree well with those of
Apsel[12] for 0 < a, < 1.0. This confirms the accuracy of assumptions employed on body
force fields, the computation of influence functions given in the appendix and the
discretization technique within the low frequency range of interest.
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Fig. 6. Comparison of rotational impedance of a rigid cylinder embedded in a half-space (h/a = 2.0,
v=1025 M, =40, M, = 10).

In the case of an elastic bar in addition to the extended half-space, a fictitious bar
with Young’s modulus E*(E* = E, — E) and density p*(p* = p, — p) has to be considered.
Unlike in the case of a rigid bar, the variation of displacements of the region V* of the
extended half-space (in turn that of the fictitious bar) is not known beforehand. By
restricting ourselves to the case of a long elastic bar excited in the low frequency range, it
is reasonable to assume that the bar is governed by the Euler-Bernoulli beam theory and
the effects of body force in the z-direction in V* and tractions in the z-direction acting on
terminal cross-sections are negligible. Based on the above assumptions, the displacement
of the bar in the x-direction, u, can be approximated in the following form

N

u(z,t) = Y a,[a, —e "] (10a)
n=1
N

u(z,t) = Y a,[a, — e "M (10b)

n=1

where a,,...,ay could be considered as generalized coordinates which remain unknown
at this stage, and the superscript dot denotes differentiation with respect to time. The
quantities «,,...,ay are necessary to satisfy the appropriate equilibrium conditions (i.c.
total moment acting on the system should be zero under the application of a horizontal
force or vice versa). The body force field in the x-direction in V* and the traction in the
x-direction in terminal cross-sections which produce a displacement field identical to that
given by eqns (10a) and (10b) in V* along the x-axis (6 = 0) could be determined by
establishing a flexibility equation in the following form for each term of eqn (10a) with
a,=1

My My )
Y [ 0251, 2)By + ) F5i,0,z5r,,2)Th —ay = —e™™"  (i=1,... .M, + M)
i=1

i=1

{11a)
M, Mz
z 2nr;Ar;z;BY; + Y. 2nrAn Ty = 0 (11b)
i=1 =1
M, M,
S 2nrArAziz;By; + ) 2mrArz Ty =0. (11¢)
= =

If the bar-half-space system is subjected to a horizontal force, then eqns (11a) and (11c)
are solved for T%;, T%;, and a,. If the system is subjected to a moment, then eqns (11a)
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and (11b) are solved to obtain T%;, T5;, «,. The body force B,; and traction T; acting on
the jth toroidal and annular required to produce the displacement field given by eqn (10a)
can be expressed as

N
By= Y a,By (12a)
LED
N
I;= Z a,T%;. (12b)
n=1

At this stage, consider the strain energy U, and kinetic energy T, of the fictitious bar.
It is found that in view of eqns (10a) and (10b)

N N

Ub= z Z Dmanam (13)
a=im=1
N N
a=im=}

where
E*na*n*m?
D,, = —————(1 — e~tr*m 15
mn 8h3(n+m)( ¢ ) ( a)
na’p*h a,e™™ a,e”" he ™m*m
Con= 3 [a,aﬁ T — - (mM)] (15b)

Note that in eqn (14), the contribution to the kinetic energy due to the velocity component
in the z-direction is neglected. The effect of this component is discussed in a subsequent
section.

Introducing standard indicial notation, the Lagrangian[16] for the extended half-
space can be written as[14]

10 . 1 1 1
L" = ’i*a;.[/puiu‘dv - ‘iJ‘;l uiT,:dS - ELI uﬂ;ds - ‘i‘J;“ uiBi dv. (16)

In eqn (16), V denotes the volume of the extended half-space, S, and S, are the areas
of terminal cross-sections at z = 0 and h, respectively. Further, note that the displacement,
velocity, acceleration, tractions and body forces in V can be expressed in terms of the
generalized coordinates.

The application of Lagrange’s equation of motion[ 16, 17] to the total system, composed
of extended half-space and fictitious bar, together with eqns (10)~(16) results in the following
algebraic equations of motion for H,e''s, when the bar-half-space system is subjected to
horizontal force H,e'**

N My .
Z a,[—2w?C,; + 2D,; + njzl r{(Ty;En; + THE )Ar;
n=1 =

M; K
4+n Z r(B;E,; + BLE)Az;Ar;] = Hola; — 1]
j=1

(=1..,N) (17

where E,; = [a, — e "], i
When the bar-half-space system is subjected to 2 moment M e, the appropriate
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Table 1. Dependence of k, and k., on the number of toroidal elements (M 1}
and the number of annular elements (M,): h/a = 10, 5 = 1.0, v = 0.25, N = 8,
a, =10

T

s [ -

T
|
|

i |

My, M2y}
.
i

=10 E = 25 £ = lu E = 250

(20, 4) (4.97, 5.40) (7.35, 15.3D) (1l.36,
(40, 8) (3.22, 6.04) (7.50, 15.43) (12.71,
{60, 6} (5.27, 6.10) (7,58, 15.86) (12.89,
(80, 8) (5,30, 6.15) (7.60, 15.91) (12.94,

.78) (52,79, 42.74)
.61) (53.56, 43.04)
.63)  (54.24, 43.70)
.65) (54.41, 43,96

(VR I S

equations of motion are given by eqns (17) with the exception that the term Hy(x, — 1) on
the right-hand side is replaced by M,i/h. Solution of eqns (17) yields the numerical values
a;{i = 1,..., N), and the horizontal displacement A, and rotation ¢, at the top end of the
bar (z = 0) are given by

N

A0 = Z an[an - 1] (18)
1

nw=

N
bo= 2 7. (19)
n=1

P e

DISCUSSION AND CONCLUSIONS

The first step of the parametric study is to determine the convergence of the numerical
solution with respect to the number of toroidal elements (M,) and annular elements (M)
used in the discretization of ¥* and the number of terms, N, used in the displacement
approximation given by eqn (10a). The non-dimensionalized impedances ky, ky, kpy, and
kg of the bar-half-space system shown in Fig. 1 are defined as

ky = Ho/ual,, ky = Mo/#a3¢o
kpy = Ho/#azd"ou’ kym = Mo/liaonu

where A, and ¢qy are the displacement in the x-direction and rotation about the y-axis
at the top end of the bar under the application of horizontal force H,. The rotation about
the y-axis and displacement in the x-direction at the top end of the bar under moment
M, is denoted by ¢, and Ayy, respectively.

Table 1 presents the dependence of impedances ky and &k, of an elastic bar-half-
space system [h/a = 10, v =025, p = 1.0 (5 = py/p), N =8, a, = 1.0] on a number of
toroidal elements (M,) and annular elements (M,) employed to discretize V*. Numerical
solutions are presented in Table 1 for E = 10 and 250, where E = E,/E. The dependence
of impedances kg, ky, kyy on the number of terms (N) used in the displacement
approximation given by eqn (10a) is presented in Table 2. It is noted that numerical results
obtained for coupled components kyy and kg, satisfy the reciprocal condition under
lateral and moment loading,

In addition to the above convergence study, solutions were obtained for kg, Ky, kyp
N

and ky, by approximating the displacement u of the bar as u = Y a,[a, — (z/h)"]. The
a=1

impedances obtained by solving the appropriate equations of motion were found to be

almost identical to those obtained on the basis of eqn (10a) as seen from Table 2. Due to
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Table 2. Convergence of the horizontal, moment and coupled impedance of an elastic bar for different
function bases and number of terms (N): #fa =10, E =100, 5 = 1.0,v=025 M; =80, M, = 8§

a_ = 1.0
°
5 & X Ko N
Expon. Folyno Expon. Polyno. Expon. Polyno.

2 {3.70, $.45) {2.96, 9.13) €11.93, 13.34) | (23.28, 41.%4) {8.20, 10,01 (10.46, 22.16)
4 (4,90, 6.17) (5.26, 6.7%) (it.38, 1.92) {i1.29, 2.11) (12,56, 5.98) {12.37, 4.93)
[ {3.78, 5.88) (5,27, 6.13) (11.76, 2.62) {11.44, 1.80) (11,30, 7.73) {12.92, 5.69)
8 {5.30, 6.13) (3.25, 6.16) {11.44, 1.79) {11,44, 1.82) {12.94, 5.865) {12.82, 5.74)
10 (5.30, 6.15) (5.25, 6.15) (11.44, 1.79) (11,44, 1.82) {12.94, 5.65) (12,91, 5.74)
iz {5.30, 6.15%) {5.25, 6,15} {11.44, 1.79) (11,44, 1.82) {12.94, 5.865) (12.91, 5.74)

Table 3. Comparison of impedances obtained using different compatibility
conditions: hfa = 10, v =025, N =8,a,=1.O,0M, =60, M, = 6

(M, M2)
Compatibility | Civcum. Avg. Compatibility |Circum. Avg.
along 6=0 Compatibility | along 6«0 Compatibilicy
{x-axis)} {x~axis}

10 (5.27, 6.10) (5.33, 6.17) (12.89, 5.63) (12.8%, 5.71)
250 (7.58, 15.86) | (7.93, 16.20) | (54.24, 43.70) |(55.29, 43.87)
1000 (5.15, 20,.31) ] (5.45, 20.91) (63.66, 106,17)| (66.10, 108.10)
5000 (3,51, 21.39) | (3.73, 22.06) | (39.79, 138.9) |(41.49, 142,60)

the azimuthal dependence of the problem, the displacement in the x-direction in ¥* due
to body force B, would be 8§ dependent. Thus, a variety of compatibility conditions could
be considered between the domain V* of the extended half-space and the fictitious bar. In
this study, displacement compatibility is imposed along the x-axis (8 = 0) of V'* and the
fictitious bar. In addition to this, we have investigated a solution which is based on
compatibility between the circumferential average displacement of V* in the x-direction
and the fictitious bar. Solutions obtained from these two compatibility conditions are
compared in Table 3. In deriving the kinetic energy of the fictitious bar as given by eqn
(14), the velocity component in the z-direction was neglected. In a separate study, the
influence of this velocity component was taken into account, and the numerical solutions
were found to differ by less than 5% from those based on eqn (14).

Figures 7-9 illustrate the influence of the flexibility ratio E and the non-dimensionalized
frequency parameter 4, (0 < g, < 1.0) on the horizontal, moment and coupled impedances
of an elastic bar-half-space system for h/a = 10 and 20 (5 = 1.0,v = 0.25). It appears from
Fig. 7 that the real part of the horizontal impedance shows a gradual decrease with
increasing frequency. As the bar becomes rigid (as E increases) the decrease in the real
part of the horizontal impedance is more pronounced, reflecting the dominance of the
inertia component. The variation in the imaginary part of the horizontal impedance is
almost linear with increasing a, for both flexible and stiff bars. The rotational impedances
plotted in Fig. 8 are normalized with respect to the static value obtained by Karasudhi et
al.[3]. The reason for this normalization is due to the fact that non-normalized rotational
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impedance for a bar with E = 25 is very small compared to that for £ = 10,000, making
it gifficult to represent rotational impedances for a wide range of E values in one figure.
In general, the variation in the real part of ky is similar to that observed for the axial
impedance in Ref. [14]. When the bar is quite flexible, Re(k,,) shows little dependence
on g and as E increases, Re(ky) increases with frequency. As the bar becomes stiffer

Re kn
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K. K. N. D. RaJaPaksE and A H. SHax
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Fig. 7. Yanation of horizontal impedance (ky) of 2 cylindrical clastic bar for various £ (v = 0.25,
F=10M, =40 M, =8forja=10 M, =60, M, =5 for hfa=20)

Fig. 8 Variation of rotational impedance (k) of a cylindrical clastic bar for various £ (v = 0.25,
F=10 M, =40, M, =8for hja= 10, M, = 60, M, = 6 for h/a = 20},
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Fig. 9. Variation of coupled impedance (k. ky)) of a cylindrical elastic bar for various E (v = 0.25,
p=10,M, =40, M, = 8 for h/a= 10, M, = 60, M, = 6 for h/a = 20).

(E - o), Re(ky) shows a typical sharp drop with increasing a, characterizing the influence
of inertia. As for the imaginary part of k,,, the variation with a, is linear except in the
very low frequency near the static solution. The coupled impedances k. and ky,, plotted
in Fig. 9 follow behaviour similar to the horizontal impedance.

From the results presented in Figs 7-9, it is evident that the relative flexibility
parameter of the bar-half-space system is governed by E, the h/a ratio, and the type of
loading (i.e. lateral or moment). This also suggests that in most practical situations, long
piles behave as flexible piles rather than as rigid piles under transverse loading.

Figure 10 illustrates the variation of horizontal and rocking impedances of an elastic
bar (h/a = 10.0, E = 100, v = 0.25) in the frequency range a, = 0-1.0 for different mass
density ratios (5). Horizontal impedance shows higher dependence on 5 than the moment
impedance. The dependence of coupled impedance on j is found to be similar to that of
moment impedance. It should be mentioned here that for highly flexible bars (e.g. h/a = 10,
and E < 50), the dependence of impedances on § may be negligible for a, < 1.0. On the
other hand, if the relative flexibility is such that the behaviour of the bar is closer to that
of a rigid bar, impedances show considerable dependence on g, for q, > 0.25.

In conclusion, an accurate solution scheme based on Lagrange’s equation of motion
is presented to study the lateral harmonic vibrations of a long elastic bar embedded in a
homogeneous half-space and subjected to a harmonic lateral load or a moment. In the
authors’ opinion, the analysis presented in this study together with those in Ref. [14]
presents the most accurate estimation at present for the impedance matrix of a single pile
under the three basic modes of loading over a wide range of frequencies.
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APPENDIX

The following are expressions for displacements corresponding to concentrated ring forces shown in Fig. 3

Concentrated ring force in the x-direction (Fig. 3(a))

wr,0,z,5,2) = cosGJ‘ BR(OF (§,2,2)58Jo(E5)G,(§r) A

0

+ J- RAF S, 2,2)58do§5)G(§r) dS (A1)

{¢]
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or,0.2;5,7) = sin GJ BRYUOF (&, 2,2)58Jo({s)G (G} d¢
0

+ J‘ RAf§F (4, 2,2)58J4d5)G () &

0
wr,8,z,5,7') = cos§ j 2aPR,(EF (&, 2, 22582 Jo(EsV(Er) dE.
0

Concentrated ring force in the z-direction with azimuthal dependence (Fig. 3(b))

ur,0,z;5,2) = cos GL aBR(QF £, 2, 75820, (£s)G,(¢r) dE
ur,8,z5,2) = sinf J; apRy(§F 6,2, 20877, (¢5)G,(Er) dE

w(r,6,2;5,2') = cos GJ; 2aR (§)F 5(§, 2, 2)88J ($sM (S} L.
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(A2)

(A3)

(A4)

(A5

(A6)

The functions Fy(§, z, 7), Fy(,2.2)..., Fs({,2,2) and R,({) appearing in eqns (A1)HA6) are defined as

Fy(§,2,2) = 4apg*(2¢* — kIXQ, + Q2) + RENEQ; — aBQ.) — REXE*Qs + 2Qy)
Fy,2,2) = Qs + Q4
Fy(§,2,2) = 42¢* — kiXaBQ, + £°Q,) + nREXQs — Qu) — REXQs + Q)
Fyé,2,2) = —[428* - kXE*Q, + 2BQ,) + nREXQ: — Qa) — RIEXQs + Qo))
Fy(§,2,2) = —[4aBE*28% — kXQy + Q) + RIEXE*Qu — aBQs) — REXEQs + 2BQ)]

1
RO = - smpire
Ry = -4-";5

RE) = 28* - k})* — 4ap?
RQ) = Q8 - K}y + 4ap??
G,(§r) = J5(8r) = Jol8r); G3(8r) = J2(r) + Joldr)

n=-1 ifz<?
= 1 ifz>7

Q: - e-n-ﬁz" Qz = e-u’«-ﬁ:' Q3 = e-clx-:’l
Qe=e7 P Tl Qomem QT

(A7)
(A8)
(A9)
(A10)

(A1)

(A12)

(A13)

(Al4a)
(A14b)
(A15)

(Al6)

(A17)

The following are the expressions for displacements corresponding to distributed tractions acting on an

annular clement (Fig. 4).
Uniform traction in the x-direction

JHrn8,z5rp2) = ws{j‘ BRy(OF (L2, 280,896 (§rpdd
o

=5,

+ L RAOF AL, 2, 2)57,(85)G(Er 0

=3

T, 6,z; r,z;) = sin O[L BR,(OF (& 2, 2)sJ,(£8)G,(§r) d

=5,

+ L RAOF(, 2;,284,($8)Go(dr) d{:[

!

(A18)

(A19)
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T, 0,z; r5,2)) = cos 0[( 2aBR (§)F,(E, z‘.z,)sf.l,(fs).l,({r,)df:[ g {A20)
VO =8

Traction in the z-direction (Fig. 3(b)) with a linear vanation in the r-direction

f Hr, 0,21 e ) = COSG['[ afR($F & 2,02 )szf.lz(fs)G,(Er‘)d{ ” (A21)
0 %

f”("u 0,z; Tp 21) = Sinﬂ[‘[ aﬁRl(é)F‘(E,z,-,z,)s’é.lz(is)G,(ﬁr‘) di:[ ' (A22)
o b1

T¥(r.0,2,7,2;) = cos 9|:J' 20BR (§)F (¢, 2,, 2,07 (&M (f”;)df:[ (A23)

where

S5p=7r,+ Ar,/2
sp=r;—Ar/2 (A24)

2}

The following are the expressions for displacements corresponding to body forces acting on a toroidal
element (Fig. 4).

Body force in the x-direction with uniform distribution within the element

S™(r,.0,2;r,,2) = cos B[J {BR(E)F (£, 2,,2)G4(¢5)G,(ér)
o

+ RyE)F A& 2,,7)GA(E8)G(Er)) ng_ ! (A25)
1%, 6,2, r.2)= sina[[ {BR(E)F (&, 2,,2)G 3(E5)G(6r)
v0
+ RyOFA(6,2, 20638516 (¢r)) dc]‘ " (A26)
£ 6,27, z,)_coseU 26BR (E)F &, 2, )EG A ESM  (Er) ng ! (A27)

where G3($s) = 5,2J,(¢s,2) — 3}111(5511)- o
Body force in the z-direction with uniform distribution in the z-direction and linearly varying distribution
in the r-direction

S, 0,z;r,,2) = cos@ U aBR(EFs(¢, 2., 2 Gal5)G, (Er) dE g (A28)
o =z,
S%(r,, 0,2, ry,2) =sin O[J afRUEFSE, 2, )G (E5)G (&) dE ' (A29)
1] Sy
S(r,.0,2;7,,2) = cos 9[‘[ 2aR (E)F, oL, 2,,2)G (EsW (Er)dE i (A30)
0 J=z,
where
Guis) = 5122-’2(5512) - szx-’z(isjz)
7, =z2,— Az;/2
22=12,+ Az;/2 (A31)
and

Fel(&,2,7) = 4aBE*2E2 — kiX—~Q,/8 — Qa/a) + nRIENE*Qa/x — 2 Q)
+ RUEXEQs/x + aQy) (A32)

Fo$,2,2) = —(Qe/B — nQu/P) (A33)
Fo(£,2,7) = —428 — k}XaQ, + £2Q,/a) + REXQs/a — Qu/B) + RIENQs/x + Qo/) (A34)
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Fold,2.2) = ~[~ 428 - KIXEQ4/B + BQ.) + RENQs/x — Qu/B) + REXQs/x + Qo/B)] (A35)
Fiol,2.2) = —[—4aBEH28* — kiXQ,/B + Qu/a) + nREXEQu/F ~ BQs) + RGNS Q6/B + BQs)].  (A36)

The functions appearing in eqns (A18}(A30) are evaluated by numerical integration along a contour in the
first quadrant of the complex plane[14].



